With the development of tools like RNAi, in the future we may be capable of eradicating species. If we can eradicate a species, should we? **CON Position**

Jennifer Baltzegar, Johanna Elsensohn, and Sophia Webster North Carolina State University

What do we mean by <u>eradication</u>?

Eradication: "worldwide eradication, not local elimination" - ESA SDS

Elimination: Removal of a species from a defined area, but not extinction

Eradication should never be attempted.

Elimination should be carefully

considered on a case-by-case basis.

We have the tools now...

RNAi

Zhu et al. 2011

Gene drive

Sinkins and Gould 2006, Gould et al. 2008, Esvelt et al. 2014

Selfish genetic elements

Sinkins and Gould 2006

...but the question isn't whether we can, but whether we should;

the *ethics* of eradication

Elimination has been attempted *many times*.

Successful ones have been *localized*.

Even local eliminations can have unintended consequences.

Smallpox has been <u>eliminated</u>...

...but why haven't we **eradicated** it? **We have the ability.**

We are keeping smallpox alive because we may need it someday.

Geopolitical considerations

Cannot remove from social, political or cultural context.

Priorities differ, may reinforce inequalities.

Caplan 2009, Greenwood et al. 2008, Myers et al. 2000, Nading 2015

Doesn't address overall health.

Logistical considerations

Surveillance will be very difficult.

Targeting vectors instead of pathogen.

Benefits are exaggerated.

Costs are underestimated.

Crop pests and invasive species have been targeted, with *uncertain consequences*

Ecological effects are uncertain: Man-made extinctions on different time scale than evolutionary ones.

Different *value systems*, what is a "pest"?

Who inherits the consequences?

Who decides?

Who **should** decide?

Where does that leave us?

Elimination may be attempted in

certain circumstances.

benefits are uncertain, and

Costs are *too high*,

consequences are *unknowable*.

not necessary, not ethical.

Eradication is *not practical*,

References:

- Bomford, M. and P. O'Brien. 1995. Eradication or control for vertebrate pests? Wildlife Soc B. 23: 249-255.
- Caplan, A. L. 2009. Is disease eradication ethical? Lancet. 373: 2192-2193.
- **Esvelt, K. M., A. M. Smidler, F. Catteruccia, and G. M. Church 2014.** Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 3:e03401.
- Fang, J. 2010. Ecology: A world without mosquitoes. *Nature News*, 466(7305), 432-434.
- Gould, F., Y. Huang, M. Legros, and A. L. Lloyd. 2008. A killer-rescue system for self-limiting gene drive of anti-pathogen constructs. Proc. Biol. Sci. 275: 2823-2829.
- Greenwood B. M., Fidock D. A., Kyle D. E., S. H. I. Kappe, P. L. Alonso, F. H. Collins, and P. E. Duffy. 2008. Malaria: progress, perils, and prospects for eradication. *The Journal of clinical investigation*, 118(4), 1266.
- **Lees A. C., and D. J. Bell. 2008.** A conservation paradox for the 21st century: the European Wild Rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 38: 304-320.
- **Leopold, A.. 2013.** The land ethic. pp 171-189. Curt Meine (ed.) *In* A Sand County Almanac & Other Writings. Literary Classics of the United States, Inc., New York NY.
- Myers, J. H., A. Savoie, and E. V. Randen. 1998. Eradication and pest management. Annu. Rev. Entomol. 43: 471-491.
- Myers, J. H., D. Simberloff, A. M. Kuris, and J. R. Carey. 2000. Eradication revisited: dealing with exotic species. Trends Ecol. Evol. 15: 316-320.
- **Nading, A. M. 2015.** The lively ethics of global health GMOs: the case of the Oxitec mosquito. BioSocieties. 10: 24-47.
- Newsome, L. D. 1978. Eradication of plant pests: con. Bull. Entomol. Soc. Am. 24: 35-40.
- Rabb, R. L. 1978. Eradication of plant pests: con. Bull. Entomol. Soc. Am. 24: 40-44.
- Renteria, J. L., M. R. Gardener, D. F. Panetta, M. J. Crawley. 2012. Management of the invasive hill raspberry (Rubus niveus) on Santiago Island, Galapagos: eradication or indefinite control? Invasive Plant Sci and Manag. 5: 37-46.
- Sinkins, S. P., and F. Gould. 2006. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 7: 427-435.
- **Smith, D. W., and E. E. Bangs. 2009.** Reintroduction of wolves to Yellowstone National Park: history, values, and ecosystem restoration, pp 92-125. *In* M. W. Hayward and M. J. Somers (eds.), Reintroduction of Top-Order Predators. Wiley-Blackwell, Oxford, UK.
- Weinstein, R. S. 2011. Should remaining stockpiles of smallpox virus (*Variola*) be destroyed? Emer Infect. Dis. 17: 681-683.
- **Zhu, F., J. Xu, R. Palli, J. Ferguson, S. R. Palli. 2011.** Ingested RNA interference for managing the populations of the Colorado potato beetle, *Leptinotarsa decemlineata*. Pest Manag. Sci. 67: 175-182.